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1. Introduction

The US Army Combat Capabilities Development Command Army Research

Laboratory (ARL) has been evaluating and designing efficient broadband

high-power amplifiers for use in sensors, communications, networking, and

electronic warfare (EW). ARL submitted dessgof Kaband lownoise amplifiers

(LNAs) , power amplifiers (PAs), and tr ans mi
Inco s -parfgrhance0.28 m gal |l i um nitride (GaN) fabri
amplifiers were fabricated as orend twoestage designs agell as integrated T/R

modules for bidirectional transceivers as part of a recent ARL Qorvo Prototype

Wafer Option (PWO), which yields many different designs from two fufich

GaN wafersThistechnical report documestesting and analysis of thedesgns,

as well as lessons learned for improvements to future design gffa¢sARL-TR-

8855 for documentatiorf these designy.

2. Low-Noise Amplifiers

The key component fom Kaband transceivelis the LNA, which, when
implementedn GaN,hasthe addeadvantages of high dynamic range and robust
survivability to highpower interference signal$hese LNAs were designed with
a goal of severajigahertz bandwidtbhenteredaround28 GHz. Various matching
topologies, stabilizing approaches, and tradeoffgani versus noise figure were
explored for twahigh-electroamobility transistor HEMT) sizes using the limited
devices in the process design kit (PDK) that had noise fdataV or 10-V biases
These designs wenetended forl0-V operation so whiletheywork over biases of
5V to 28V, the targeted optimal performanceatd 0V with a typical 200mA/mm
drain currentThe LNAs were designed as tvstage amplifiers, with the first stage
optimized forlow noisefigure. Even though the first stages were designed for
optimal useas a standalone amplifier, they wéabricatdas test circuitor testing
andanalysis of théwo-stage LNAs There werdwo designs based orda x 25

e manda 6- x 25¢ MHEMT, eachtradng off stability, noise figure, return loss,
and gain Initially, the larger6- x 25¢ mLNA design seemed a narrower band
stable design compareaslith a potentially broader band gain with the smaller
HEMT sizebutwith a riskiertradeoff ofstability versus &bility.

Figure 1 showsa plot of measurments(solid) versussimulatiors (dash)of the

small signal gparameters of the firdtage6- x 25¢ nLNA, at the nominal 18/

DC bias. While the shapes are similar, the actual gain is highglighity narrower

band A similar comparison plot is shown Kig. 2 for the sam&NA measured at

5 V. The shift to a lower frequency, both simulated and measured, is noted at the



lower 5V bias Recall that the design was intended for 28 GHz &V Dperation,
but could le used at the lower-8 operation fora slightly lower frequencyand
operation, orconversely,over slightly higher frequency band$or DC voltages
higher than 1%/. An electromagneticEM) resimulation of the full onstage LNA
layoutwas repeated to etinate the possibility of unsimulated parasitic interaction
amongthe input match, source inductance, and output matchsofe¢hy compact
layout But, the full EM layout result was similar tte original simulation where
those thredceM layoutswere ind@endensections The higher gain peak could be
explained by lower than expected source inductancepuid be due taypical
process variation in fabrication
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With the otherd- x 25¢ nMLNA, there is excellent agreement between measured
and simulated performanedrigure 3 shows measured (solid) versimulation
(dash)plot of the small signad-parameters of the first stagex 25¢ nmLNA, at

the nominal 16V DC bias, whileFig. 4 isthe same comparison but aVIDC bias
Once again, the peak performance shifts down a few GHz at the |owkias but
agrees well with the linear simulatiolt should be noted the nonlinear device
models for thel- x 25¢ mand6- x 25¢ MHEMTs did not agreanearly aswvell as

the linear modelgpossibly they only fit well for higher voltages or possibly these
particular models need updatirAs a standalone orstage amplifier, thd- x 25

¢ nfirst-stage shows broader, but lower, gain in compangitimthe 6- x 25 m
LNA.



(zHD) Aouanbai4
0)% Ge 0¢€ Gc 0c Gl

0l g

gP Le'lc-
ZHO 8¢

gpcil-
ZHO 8¢

gP 9.6'6-
ZHDO 8¢

gp 908
ZHDO 8¢

gp €ov'8
ZHO 8¢

AOLLLS sesi AOL LS wis AOL 2ZS sesi

(16 shacd ;&w:mo. (z'2)sha

A0V~ ces seapy AO} €es wis . AOL LgS sesi

zzsiaode  (C2shaadp  ((2she

AOL1ZS sesi AOL LIS WIS AOL LIS SW

(0 2shacde ;ﬁ:w:mo. (G 1sha

AOT SW DQT STxy VN'I

ol

Gl

Measured (solid) vs. simulation (dash) onstage4- x 25 m_NA (10 V)

Fig. 3



0)74

Ge 0¢

(zH9) Aouanbaiy

Gc

0l g

apreacl-
ZHO 8¢

gpP g 0lL-
ZHO 8¢

apc6l’L-
ZHO 8¢

gpP 8¢9
ZHO 8¢

apP ¥€g9
ZHO 8¢

AS LIS seap NS LS wis NS 2eS seap

(10 shaadie ::,va_vmo. (tz'2)sha
NS zes seapl NS ges wis NS LeS seap
Iz 2)shaad :S,va_vmo. (1 2)sha
ASLES seapl AST LIS WIS AS LIS SH

(101 2)sh acdle ::,:w_vmo. (L 1sha

AS SW HQT STXy VN1

Ge-

0c-

Gl-

Ol-

Ol

Gl

Measured (solid) vs. simulation (dash) onstage4- x 25¢ mLNA (5 V)

Fig. 4



For the twestage LNA design of the x 25 mHEMT, the gain peak is even more
pronounced than the orstage otherwise the gain curve follows the prediction
There is also an unstable region, as the input match is very poor rigbt gdin
peak, especially at the lowenbDC bias Figure 5 shows measured (solid) versus
simulation(dash)plot of the small signalparameters of the twstaget- x 25 m
LNA at 10V DC bias, whileFig. 6 is thesame comparison at\b DC bias It may
bethat the high gaipeak of more than 20 dB atiZ& GHz at 10/, and closer to
25GHz at 5V, could bedue to typicaprocess variatiarFortunately, thether twe
stage4- x 25¢ mMLNA, which uses less DC powé20 mA vs. 30mA), yields
broader band gajrandwasincluded inthe TR module layoutsf thesefirst-pass
desigrs.
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As with the firststage, the twataged- x 25 nmLNA shows very good agreement
between measured and simulated performardgure 7 shows a measured (solid)
versus simulation (dash) plot of the small sigrphsameters of the twstaget- x

25-¢ mLNA at 10V DC bias, whlie Fig. 8 is the same comparison & ®C bias.
There is the slight downshift of gain performabgea few GHz between the design
biased at 10V versus 5V. The minimal differences between measured and
simulated sparametesare within typical process vation and/or typical modeling
accuracy.The roise figure still needs to be measured for these LNA designs to
verify the expected performance, particularly for thex 25& mLNA design
included in the TR modules. Poor return loss and potential instgbiftthe two
stage6- x 25¢ mMLNA design may make noisggure measurements difficult, or
result in higher than expected noise figure.

11
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3. Power Amplifiers

Designs for a Kdand transceiver included efficient Pégh anoutput power goal
near 1 Wat 28 GHz The PA design variationsompriseda 4 x 50-¢ nHEMT as
both a driver and output sfaand an 8 x 50-e THEMT as an output stag&he
designs were optimized folominal DC biases of 28 {400 mA/mm), but should
operate well at 2V with less output poweiT 0 achieve sufficient gain, a twsiage
amplifier wasdesignedwith an output stage matched for power and efficiency
Both the4- x 50-¢ mand8- x 50-¢ nonestage PAs were fabricatsthndalondor

test and evaluatiotsmall signal gparameters are measured first to verify gain and
stability beforemeasuringpower peformance.

Figure 9showsmeasured (solid) versgsmulation(dash)plots of thesmall signal
s-parameters of thé x 50-¢ nNPA at the nominal 28 DC bias Measurements at
20V are also shown, though the results shift down in frequency and exhibityslightl
lower gain This trend continuegor measurements at M and 5V asthe gain
bandwidth shifs lower in frequency and drops in gdor lower drain voltage.
Gain is also typically a function afrain current, with good gain exhibited for a
typical 100mA/mm bias,with even more gain at 150A/mm, and only a slight
increase of gain at 200 mA/m@imulations with the HEMT models predict similar
small signal performancketween20 V and 28 V, while measurements show a
larger variation between 20 and 28V DC biags

14
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Figure 10 shows measured (solid) versus simuldtlash)plots of the small signal
s-parameters of th& x 50-¢ nNPA at the nominal 28 DC bias Measurements at
20V are also shown, with a similar down shuftgain versusrequency and slightly
lower gain Note the slightly narroer gain peak of the largeéd- x 50-¢ THEMT
PA comparedvith the previougt- x 50-¢ nPA.

Two different twestage ampliers were designethothusedthe4- x 50-¢ nPA as

a driver stage, while one used #he<x 50-¢ nas an output stage and the othsed
the largei8- x 50-¢ noutput stage to achieve more thawlof output powerThe
plot in Fig. 11 showsgood agreement h&een measurments (solid) and
simulatiors (dash)of the small signal-parameters of the twstaged- x 50 nPA

at 20V and 28V DC bias This PA yieldsvery good broadband gaiap to24 dB
(28 GHz, 28V). Figure 12 shows measured (solid) versmsulation(dash)plots

of the small signal-parameters dhe twostaged- x 50-¢ m8- x 50-¢ nPPA at 20

V and 28V DC bias This also has excellent gaiear 251B with good agreement
though thenput match is poorer thaxpectedThis could be due to typical process
variation, or the biasnay need tobe adjusted to improve the agreement to
simulations
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Fig. 12 Measured (solid) vs. simulation (dash) twestage4- x 50-¢ m8- x 50-e mPA (20V, 28V)
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